Supporting Information

Syntheses of Optically Active Trifluoro-norcoronamic Acids

Toshimasa Katagiri, Minoru Irie, and Kenji Uneyama*

Department of Applied Chemistry, Faculty of Engineering, Okayama University, Okayama 700-8530, Japan uneyamak@cc.okayama-u.ac.jp

Experimental Section

General. Unless otherwise stated, all non-aqueous reactions and distillations were carried out under atmosphere of dry nitrogen or dry argon. All commercially available reagents and solvents were employed without further purification. Dry THF was distilled from benzophenone-Na ketyl solution just prior to use.

Chromatography on silicagel was performed using a forced flow of the solvent system on E. Merck silica gel (Kieselgel 60, 230-400 mesh). HPLC analyses were performed using Shimadzu HPLC-10A system (1 = 254 nm) connected to Daicel Chiralcel OJ column. GC analyses were performed using Shimadzu GC-12A system connected to GL-Science CP-Cyclodex- -256M Capillary column. Melting points were obtained on Yanagimoto MP-S3 apparatus and are uncorrected.

¹H (200 MHz), ¹⁹F (188 MHz), and ¹³C (50.3 MHz) NMR spectra were recorded on Varian VXR-200 spectrometers. Chemical shifts are reported in ppm from tetramethylsilane (0.0 ppm for ¹H and ¹³C NMR) and C₆F₆ (0.0 ppm for ¹⁹F NMR). For quantitative analyses of yields, 1,3-bis(trifluoromethyl)benzene was used as an internal standard for ¹⁹F NMR. Coupling constants (*J*) are reported in hertz. Optical rotation was measured in a cell with 50 mm length and 1 ml capacity using a Horiba High Sensitive Polarimeter SEPA-300. Elemental analyses were performed on Perkin Elmer series II CHNS/O Analyzer 2400. GC/MS was performed on a Hewlett-Packard HP5971A. Intensity measurements for X-ray crystallographic analyses were made on a Rigaku RAXIS-IV imaging plate area detector with graphite monochromated Mo-K radiation.

1-(cyanomethyl)-2,5-dimethylpyrrol

To a refluxed solution of KOH (0.35 g) in MeOH (2.8 ml)-H₂O (0.14 ml) was added dropwise a mixture of aminoacetonitrile sulfate (0.5040 g) with hexanedione (0.70 ml) dissolved in MeOH (2.8 ml). The mixture was refluxed for 12 hours. The reacting solution was cooled, then diluted by Et₂O, and washed with brine, sat. NaHCO₃ aq., and again brine. The solvent was removed from the mixture and crude product was distilled in vacuo using Kugelrohr distillation apparatus. The pure product, 1-(cyanomethyl)-2,5-dimethylpyrrol was obtained in 63% yield as a white solid.

M.p.: 74-77 °C; IR (KBr): 2250 cm⁻¹; ¹H NMR (CDCl₃): 2.29 (s, 6H), 4.64 (s, 2H), 5.84 (s, 2H); EI-MS (rel. int) 134 (100, M⁺), 106 (60); Anal. Calcd. for C₈H₁₀N₂: C, 71.61; H, 7.51; N, 20.88. Found: C, 71.26; H, 7.39; N, 20.98. [Bruekelman, S. P.; Leach, S. E.; Meakins, G. D.; Tirel, M. D. *J. Chem. Soc., Perkin Trans I*, **1984**, 2801; Green, T. W.; Wuts, P. G. M. "Protective Groups in Organic Synthesis, 3rd ed", pp568]

5,5,5-trifluoro-4-hydroxy-2-(2,5-dimethyl-1-pyrrolyl)pentanenitrile (3a)

To a solution of 1-(cyanomethyl)-2,5-dimethylpyrrol (0.67 g, 5 mmol) in 15 ml THF, an 1.2 eq. amount of 40% NaHMDS / THF solution was added at -40 °C. The mixture was stirred at the temperature for a while, then added 2,3-epoxy-1,1,1-trifluoropropane **2** (0.56 g, 5 mmol) to the solution dropwise. After 3 hours reaction the mixture became brown. The reacting solution was quenched by NH4Cl aq., extracted by Et₂O, and washed with brine. Then the crude product was submitted to column chromatography. The 5,5,5-trifluoro-4-hydroxy-2-(2,5-dimethyl-1-pyrrolyl)pentanenitrile (**3a**, 0.9 g), which was the 7:3 mixture of two diastereomers containing a small amount of AcOEt eluent, was obtained in 73% yield as a colorless oil.

IR (Neat): 2280 cm⁻¹; ¹H NMR (CDCl₃): 2.0-2.7 (m, 2H), 2.32 (s,6H), 3.44 (ddq, J = 11, 2, 6, 0.7H), 3.8 (br, 1H), 4.27 (ddq, J = 11, 2, 6, 0.3H), 5.34 (dd, J = 11, 4, 0.7H) 5.41 (dd, J = 11, 4, 0.3H) 5.82 (s,2H); ¹⁹F NMR (CDCl₃): 81.9 (d, J = 6); EI-MS (rel. int) 246 (100, M⁺), 134 (100), 119 (33), 94 (60).

The compound was rather unstable thus used for the next reaction without further purification.

2-trifluoromethyl-1-(2,5-dimethyl-1-pyrrolyl)cyclopropyl cyanide (4a)

To a solution of p-TsCl (0.40 g, 2.1 mmol) and NaH 60% in oil (0.31 g, 7.5 mmol) in THF (10 ml), solution of **3a** (0.47 g, 1.9 mmol) in THF (3 ml) was added dropwise at 0 °C. The mixture was stirred for 96h at 0 °C, then reacting solution was quenched by NH4Cl aq., and extracted by Et₂O. The organic extracts were washed with brine, dried over anhydrous MgSO₄, and concentrated in vacuo. The crude 2-trifluoromethyl-1-

(2,5-dimethyl-1-pyrrolyl)cyclopropyl cyanide **4a** (0.35 g, 1.6 mmol) with one diastereomer of 75% ee was obtained in 82% yield. The compound was then submitted for the first recrystallization to eliminate the racemate and the second recrystallization to obtain the 0.25 g of colorless plates **4a** with >98% ee (70% from crude **4a**).

M.p.: 77-79 °C; IR (KBr): 2260 cm⁻¹; ¹H NMR (CDCl₃): 2.04 (dd(q), J = 7, 7, <1, 1H), 2.23 (dd, J = 7, 7, 1H), 2.34 (s, 6H), 2.55 (ddq, J = 10, 7, 6, 1H), 5.82(s, 2H); ¹⁹F NMR (CDCl₃): 97.7 (d, J = 6); EI-MS (rel. int) 228 (100, M⁺), 213 (27), 159 (64), 145 (27), 77 (27); Anal. Calcd. for C₁₁H₁₁F₃N₂: C, 57.89; H, 4.86; N, 12.27. Found: C, 57.76; H, 4.95; N, 12.33.

The compound was submitted for X-ray crystallographic analysis (tentative sample and file name is irie-4). The CIF file for the analysis are attached at the end of this supporting informations.

1-acetamido-2-trifluoromethylcyclopropyl cyanide (5)

A solution of **4a** (0.114 g, 0.5 mmol), periodic acid (1.283 g, 6.0 mmol), and ruthenium trichloride hydrate (0.0015 g, 1 μ mol), in carbon tetrachloride (2 ml), acetonitrile (2 ml), and water (5 ml) was stirred in room temperature for 1 day. Ether was added (a deep black color appeared at this point), then stirred vigolously for 10 min. The organic phase was separated and was washed with brine, dried over anhydrous MgSO4, and concentrated in vacuo. A column chromatography on silica gel gave 1-acetamido-2-trifluoromethylcyclopropyl cyanide **5** (0.072 g, 0.38 mmol) as a white solid in 71% yield.

M.p.: 93-96 °C; IR (KBr): 1670 cm⁻¹; ¹H NMR (CDCl₃): 1.74 (ddq, J = 10, 8, 1, 1H), 1.96 (dd, J = 7, 8, 1H), 2.03 (s, 3H), 2.14-2.35 (ddq, J = 10, 7, 7, 1H), 6.82 (br, 1H); ¹⁹F NMR (CDCl₃): 97.2 (d, J = 7); EI-MS (rel. int) 192 (5, M⁺), 150 (9), 43 (100),; Anal. Calcd. for C7H7F3N2O: C, 43.76; H, 3.67; N, 14.58. Found: C, 43.97; H, 3.78; N, 14.87.

trifluoro-norcoronamic acid hydrochloride (6)

A 0.072 g of nitrile **5** was allowed to react with 4 ml of conc. HCl solution at 60 °C for 24 hours. Water was evapolated in vacuo, and residue was submitted for column chromatography on silica gel with acetone eluent. A 0.054 g of trifluioro-norcoronamic acid hydrochloride monohydrate **6** was obtained as a white powder in 70 % yield.

M.p.: 200 °C (decomp.); []²⁰_D+13.6 (*c* 1.2, H₂O); IR (KBr): 3448, 3040, 1618 cm⁻¹; ¹H NMR (D₂O): 1.58 (ddq, J = 10, 8, 1, 1H), 1.90 (dd, J = 8, 7, 1H), 2.28 (ddq, J = 10, 7, 7, 1H); ¹⁹F NMR (CDCl₃): 106.9 (d, J = 7); Anal. Calcd. for C5H9ClF3NO₃: C, 26.86; H, 4.06; N, 6.26. Found: C, 27.08; H, 4.32; N, 6.47.

2-trifluoromethyl-1-(3,4-dimethoxyphenyl)cyclopropyl cyanide (4b)

To a solution of 3,4-dimethoxyphenylacetonitrile (8.9 g, 50 mmol) in 110 ml THF, an 1.2 eq. amount of n-BuLi solution was added dropwise at -78 °C. The mixture became green to orange, within 30 minutes, then added 2,3-epoxy-1,1,1-trifluoropropane **2** (5.6 g, 50 mmol) to the solution dropwise. After 22.5 hours the reaction mixture became black. The reacting solution was quenched by NH4Cl aq., extracted by Et₂O, and washed with brine. Then the crude product was submitted for column chromatography. Crude 5,5,5-trifluoro-4-hydroxy-2-(3,4-dimethoxyphenyl)pentanenitrile (**3b**), was used for further reaction as it was.

Successive cyclization was undertaken as followings: To a solution of p-TsCl (9.5 g, 50 mmol) and NaH 60% in oil (8.0 g, 200 mmol) in THF (100 ml), solution of crude **3b** in THF (100 ml) was added dropwise at room temperature. The mixture was stirred for 24 hours at room temperature, then reacting solution was quenched by NH4Cl aq., and extracted by Et2O. The organic extracts were washed with brine, dried over anhydrous MgSO4, and concentrated in vacuo. The crude product was distilled in vacuo to give slightly yellowish blocks, **4b** (8.25 g, 33.4 mmol) with 90% de mixture of two diastereomer of 75% ee was obtained in 67% yield from epoxide **2**.

Twice recrystallization of crude **4b** from benzene gave 2.7 g of colorless needles with >99% ee (33% from crude **4b**).

M.p.: 71-72 °C; IR (KBr): 2240 cm⁻¹; ¹H NMR (CDCl₃): 1.81 (ddq, J = 8, 7, <1, 1H), 2.02 (dd, J = 7, 6, 1H), 2.25 (ddq, J = 6, 6, 8, 1H), 3.88 (s, 3H), 3.91 (s, 3H), 6.81-6.88(m, 3H); ¹⁹F NMR (CDCl₃): 97.4 (d, J = 6); EI-MS (rel. int) 271 (30, M⁺), 240 (100), 69 (30); Anal. Calcd. for C_{13H12F3NO2}: C, 57.57; H, 4.46; N, 5.16. Found: C, 57.17; H, 4.58; N, 5.52.

The compound was submitted to X-ray crystallographic analysis (tentative sample and file name is irie-3). The copy of X-ray-structure report, the FoFc table, and the CIF file for the analysis are attached at the end of this supporting informations.

2-trifluoromethyl-1-(3,4-dimethoxyphenyl)cyclopropylcarboxamide (7)

A solution of **4b** (2.1 g, 1.1 mmol), H₂O₂ (30%, 4 ml), KOH aq. (7 mol/l, 0.4 ml) in ethanol (5 ml) was refluxed for 12 hours, then the reacting solution was extracted by Et₂O. The organic layer was washed with brine, dried over anhydrous MgSO₄, and concentrated in vacuo. Recrystallization of crude product gave 1.8 g of

7 in 79% yield.

M.p. : 64-67 °C; IR (KBr): 3440, 3240, 1690 cm⁻¹; ¹H NMR (CDCl₃): 1.36 (m, 1H), 2.16-2.27 (m, 2H), 3.86 (s, 3H), 5.58 (br, 1H), 6.12 (br, 1H), 6.80-7.40 (m, 3H); ¹⁹F NMR (CDCl₃): 100.8 (d, J = 6); EI-MS (rel. int) 289 (100, M⁺), 274 (32), 245 (20), 230 (30), 214 (18), 44 (18); Anal. Calcd. for Cl₃H14F3NO₃: C, 53.98; H, 4.88; N, 4.84. Found: C, 54.11; H, 5.09; N, 4.77.

N-Boc Trifluoro-allo-norcoronamic acid (9)

A mixture of **7** (0.47 g, 1.6 mmol), Pb(OAc)4 (1.01 g, 1.6 mmol), and t-BuOH (10 ml) was stirred at 40 °C for 24 hours. To the reacting solution, sat. NaHCO3 aq. was added, then was extracted with Et₂O. Organic phase was dried over anhydrous MgSO4, and concentrated in vacuo. The compound was rather unstable and was thus used for the next reaction without further purification. Crude **8** was purified by column chromatography just prior to the successive reaction.

A mixture of **8**, carbon tetrachloride (6 ml), acetonitrile (6 ml), water (15 ml), periodic acid (4.2 g, 20 mmol), and ruthenium trichloride hydrate (0.01 g, 0.02 mol) was stirred in room temperature for 20 hours. Ether was added (a deep black color appeared at this point), then stirred vigolously for 10 min. The organic phase was separated and was washed with brine, dried over anhydrous MgSO4, and concentrated in vacuo. Recrystallization of crude product gave N-Boc trifluoro-allo-norcoronamic acid, **9** (white powder) in 30% yield from **7**.

M.p.: 158-159 °C; [$]^{20}_{D}$ -25.5 (*c* 3.2, CDCl₃); IR (KBr): 3370, 1700 cm⁻¹; ¹H NMR (CDCl₃): 1.45 (s, 9H), 1.81 (m, 1H), 2.00 (m, 1H), 2.52 (m, 1H), 5.15 (br, 1H); ¹⁹F NMR (CDCl₃): 100.5 (d, *J* = 6); EI-MS (rel. int) 169 (17, M⁺-Boc), 59 (33), 57 (100), 41 (27); Anal. Calcd. for C₁₀H₁₄F₃NO4: C, 44.61; H, 5.24; N, 5.20. Found: C, 44.69; H, 5.05; N, 5.58.

CIF files

CIF file for 2-trifluoromethyl-1-(2,5-dimethyl-1-pyrrolyl)cyclopropyl cyanide (4a)

data_irie 4a

#------_audit_creation_date 'Fri Mar 18 08:47:12 2000' _audit_creation_method 'from TEXRAY.INF file'

audit update record ?

#	
_computing_data_collection	'MSC/AFC Diffractometer Control'
_computing_cell_refinement	'MSC/AFC Diffractometer Control'
_computing_data_reduction	'teXsan'
_computing_structure_solution	?
_computing_structure_refinement	'teXsan'
_computing_publication_material	'teXsan'
_computing_molecular_graphics	?
#	
_chemical_compound_source	?
_chemical_name_common	?
_chemical_formula_weight	228.22
_chemical_formula_analytical	?
_chemical_formula_sum	'C11 H11 F3 N2 '
_chemical_formula_moiety	'C11 H11 F3 N2 '
_chemical_formula_structural	?
_chemical_melting_point	?
#	
_cell_length_a 8.184	46(6)
_cell_length_b 19.40	07(2)
_cell_length_c 7.025	50(6)
_cell_angle_alpha 90	
_cell_angle_beta 90	
_cell_angle_gamma 90)
_cell_volume 1115	5.8400
_cell_formula_units_Z 4	
_cell_measurement_temperature	288.2
_cell_measurement_temperature _cell_measurement_reflns_used	288.2 0
_cell_measurement_temperature _cell_measurement_refIns_used _cell_measurement_theta_min	288.2 0 0.0

#-----_symmetry_cell_setting orthorhombic _symmetry_space_group_name_H-M 'P 21 21 21 ' _symmetry_Int_Tables_number 19 ? _symmetry_space_group_name_Hall loop_ _symmetry_equiv_pos_as_xyz x,y,z 1/2-x,-y,1/2+z1/2+x, 1/2-y, -z-x,1/2+y,1/2-z _exptl_crystal_description 'unknown' _exptl_crystal_colour 'unknown' 0.000 _exptl_crystal_size_max 0.000 _exptl_crystal_size_mid 0.000 _exptl_crystal_size_min _exptl_crystal_density_diffrn 1.358 _exptl_crystal_density_meas 'not measured' _exptl_crystal_F_000 472.00 0.117 _exptl_absorpt_coefficient_mu _exptl_absorpt_correction_type none _exptl_special_details ; ? ; # _____ _diffrn_special_details ; ? ;

_diffrn_ambient_temperature 288.2
_diffrn_radiation_wavelength 0.7107
_diffrn_radiation_type 'Mo K\a'
_diffrn_radiation_source 'Rigaku rotating anode'
_diffrn_radiation_monochromator graphite
_diffrn_radiation_detector 'Imaging Plate'
_diffrn_measurement_device 'Rigaku RAXISII'
_diffrn_measurement_method
_diffrn_standards_number 0
_diffrn_standards_interval_count 0
_diffrn_standards_decay_% 0.00
loop_
_diffrn_standard_refln_index_h
_diffrn_standard_refln_index_k
_diffrn_standard_refln_index_l
_diffrn_reflns_number 930
_reflns_number_total 930
_reflns_number_observed 916
_reflns_observed_criterion >3.0sigma(I)
_diffrn_reflns_av_R_equivalents 0.000
_diffrn_reflns_av_sigmaI/netI 0.042
_diffrn_reflns_limit_h_min 0
_diffrn_reflns_limit_h_max 10
_diffrn_reflns_limit_k_min 0
_diffrn_reflns_limit_k_max 24
_diffrn_reflns_limit_1_min 0
_diffrn_reflns_limit_l_max 8
_diffrn_reflns_theta_min 0.00
_diffrn_reflns_theta_max 0.00
_diffrn_reflns_reduction_process 'Lp corrections applied'

_diffrn_orient_matrix_UB_11	0.00000	
_diffrn_orient_matrix_UB_12	0.00000	
_diffrn_orient_matrix_UB_13	0.00000	
_diffrn_orient_matrix_UB_21	0.00000	
_diffrn_orient_matrix_UB_22	0.00000	
_diffrn_orient_matrix_UB_23	0.00000	
_diffrn_orient_matrix_UB_31	0.00000	
_diffrn_orient_matrix_UB_32	0.00000	
_diffrn_orient_matrix_UB_33	0.00000	
#		-
loop_		
_atom_type_symbol		
_atom_type_oxidation_number		
_atom_type_number_in_cell		
_atom_type_scat_dispersion_real		
_atom_type_scat_dispersion_imag		
_atom_type_scat_source		

C 0 44 0.003 0.002

;International Tables for Crystallography

(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)

;

```
H 0 44 0.000 0.000
```

;International Tables for Crystallography

```
(1992, Vol. C, Table 6.1.1.2)
```

;

F 0 12 0.017 0.010

;International Tables for Crystallography

```
(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)
```

```
;
```

N 0 8 0.006 0.003

;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) #. loop_ _atom_site_label _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_thermal_displace_type _atom_site_calc_flag _atom_site_calc_attached_atom _atom_site_occupancy _atom_site_refinement_flags F(2) -0.1161(7) 0.0176(2) -0.290(1) 0.114(2)Uani d . 1.00. F(3) 0.1031(9) 0.0086(3) -0.139(1) 0.112(2) Uani d . 1.00. $F(4) \quad 0.114(1) \quad 0.0272(3) \quad -0.427(1) \quad 0.149(3)$ Uani d . 1.00 . N(3) -0.1086(6) -0.1930(2) -0.2569(7) 0.042(1)Uani d . 1.00 . N(4) -0.0685(8) -0.1026(4) 0.1524(10) 0.073(2) Uani d . 1.00 . $C(1) \quad 0.0327(9) \quad -0.0829(3) \quad -0.345(1) \quad 0.054(2)$ Uani d . 1.00 . C(2) -0.0103(7) -0.1366(3) -0.187(1) 0.047(2)Uani d . 1.00 . C(3) -0.0720(8) -0.2623(3) -0.229(1) 0.055(2)Uani d . 1.00 . C(4) -0.2050(10) -0.2984(3) -0.279(1) 0.062(2)Uani d . 1.00 . C(6) -0.3298(8) -0.2519(4) -0.343(1) 0.058(2)Uani d . 1.00 . $C(7) \quad 0.088(1) \quad -0.2868(4) \quad -0.155(1) \quad 0.071(2)$ Uani d . 1.00 . $C(9) \quad 0.1605(9) \quad -0.1288(4) \quad -0.260(1) \quad 0.072(3)$ Uani d . 1.00 . C(10) -0.3506(9) -0.1194(4) -0.363(1) 0.065(2)Uani d . 1.00 . $C(11) \ 0.032(1) \ -0.0095(4) \ -0.303(2) \ 0.083(3)$ Uani d . 1.00 . C(12) -0.2704(7) -0.1880(3) -0.322(1) 0.048(2)Uani d . 1.00 .

C(13)	-0.0412(8) -0.1152(3) 0.004(1) 0.054(2) Uani d . 1.00 .
H(1)	-0.2036	-0.3477	-0.2779	0.10(3)	Uiso calc . 1.00 S
H(2)	-0.4368	-0.2631	-0.3924	0.02(1)	Uiso calc . 1.00 S
H(3)	-0.0021	-0.0948	-0.4696	0.22(3)	Uiso calc . 1.00 S
H(4)	0.2431	-0.1093	-0.1833	0.07(2)	Uiso calc . 1.00 S
H(5)	0.2076	-0.1640	-0.3388	0.11(3)	Uiso calc . 1.00 S
H(6)	0.1351	-0.3147	-0.2463	0.32(2)	Uiso calc . 1.00 S
H(7)	0.0667	-0.3105	-0.0407	0.18(3)	Uiso calc . 1.00 S
H(8)	0.1513	-0.2468	-0.1311	0.16(3)	Uiso calc . 1.00 S
H(9)	-0.2863	-0.0954	-0.4590	0.28(2)	Uiso calc . 1.00 S
H(10)	-0.3505	-0.0933	-0.2513	0.26(2)	Uiso calc . 1.00 S
H(11)	-0.4555	-0.1268	-0.4101	0.04(2)	Uiso calc . 1.00 S

loop_

_atom_site_aniso_label
_atom_site_aniso_U_11
_atom_site_aniso_U_22
_atom_site_aniso_U_33

- _atom_site_aniso_U_12
- _atom_site_aniso_U_13

_atom_site_aniso_U_23

F(2)	0.115(4)	0.060(3)	0.169(7)	0.014(3)	-0.005(5)	-0.014(4)
F(3)	0.149(5)	0.067(3)	0.120(5)	0.009(3)	-0.036(5)	-0.035(3)
F(4)	0.240(8)	0.074(4)	0.132(5)	-0.043(4)	0.103(6)	-0.004(4)
N(3)	0.054(3)	0.034(2)	0.039(3)	0.000(2)	-0.006(2)	-0.001(2)
N(4)	0.082(4)	0.094(5)	0.042(3)	0.013(4)	0.013(4)	-0.022(4)
C(1)	0.067(4)	0.047(4)	0.046(4)	-0.009(3)	0.000(4)	-0.004(3)
C(2)	0.048(3)	0.040(3)	0.051(4)	0.000(3)	0.003(3)	-0.010(3)
C(3)	0.076(4)	0.036(3)	0.051(4)	0.006(3)	0.004(4)	0.000(3)
C(4)	0.096(5)	0.049(4)	0.040(4)	-0.016(4)	-0.008(4)	-0.002(3)

C(6) 0.057(4) 0.070(5) 0.049(4) -0.010(3) 0.002(4) 0.000(4)						
C(7) 0.104(6) 0.061(4) 0.047(4) 0.024(4) -0.024(5) -0.007(4)						
C(9) 0.055(4) 0.059(4) 0.102(8) 0.002(4) 0.007(5) -0.038(5)						
$C(10) \ 0.066(4) \ 0.077(5) \ 0.051(5) \ 0.018(4) \ -0.004(4) \ 0.004(4)$						
C(11) 0.086(5) 0.063(5) 0.099(7) 0.005(5) 0.020(7) 0.002(5)						
C(12) 0.049(3) 0.053(4) 0.041(3) -0.001(3) 0.000(3) 0.001(3)						
C(13) 0.044(3) 0.048(3) 0.071(5) 0.008(3) 0.000(4) -0.016(4)						
#						
_refine_special_details						
;						
?						
;						
_refine_ls_structure_factor_coef F						
_refine_ls_matrix_type full						
_refine_ls_weighting_scheme $'w = 1/[\langle s^2(Fo) + 0.00022 Fo ^2^]'$						
_refine_ls_hydrogen_treatment refU						
_refine_ls_extinction_method none						
_refine_ls_extinction_coef ?						
_refine_ls_abs_structure_details ?						
_refine_ls_abs_structure_Flack ?						
_refine_ls_number_reflns 916						
_refine_ls_number_parameters 156						
_refine_ls_number_restraints 0						
_refine_ls_number_constraints 0						
_refine_ls_R_factor_all ?						
_refine_ls_R_factor_obs 0.0776						
_refine_ls_wR_factor_all ?						
_refine_ls_wR_factor_obs 0.1070						
_refine_ls_goodness_of_fit_all ?						
_refine_ls_goodness_of_fit_obs 3.698						

```
0.0590
_refine_ls_shift/esd_max
                           0.0020
_refine_ls_shift/esd_mean
                           -0.22
_refine_diff_density_min
                           0.24
_refine_diff_density_max
#-----
                                _geom_special_details
;
?
;
loop_
_geom_bond_atom_site_label_1
_geom_bond_atom_site_label_2
_geom_bond_distance
_geom_bond_site_symmetry_1
_geom_bond_site_symmetry_2
_geom_bond_publ_flag
   ??????
# -- ENTER BONDS HERE, ONE PER LINE --
# e.g. C1 C2 1.541(1) . . yes
#-----
loop_
_geom_angle_atom_site_label_1
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_2
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
# -- ENTER ANGLES HERE, ONE PER LINE --
```

e.g. C1 C2 C3 109.4(3) . . . yes ????????? #----loop_ _geom_contact_atom_site_label_1 _geom_contact_atom_site_label_2 _geom_contact_distance _geom_contact_site_symmetry_1 _geom_contact_site_symmetry_2 _geom_contact_publ_flag ?????? # -- ENTER BONDS HERE, ONE PER LINE --# e.g. O1 N1 1.541(1) . . yes #-----'ENTER JOURNAL NAME HERE' _publ_requested_journal _publ_contact_author ; ENTER NAME ENTER ADDRESS _publ_contact_letter ENTER TEXT OF LETTER ; ? _publ_requested_coeditor_name 'ENTER PHONE NUMBER ' _publ_contact_author_phone 'ENTER FAX NUMBER ' _publ_contact_author_fax 'ENTER EMAIL ADDRESS ' _publ_contact_author_email

loop_

_publ_author_name

_publ_author_address

' FIRST AUTHORS NAME '

;

FIRST AUTHORS ADDRESS

;

_publ_section_title

;

;

ENTER SECTION TITLE

_publ_section_abstract

;

ENTER ABSTRACT

;

_publ_section_experimental

ENTER EXPERIMENTAL SECTION

;

_publ_section_comment

;

;

ENTER TEXT

;

_publ_section_references

;

ENTER OTHER REFERENCES

Molecular Structure Corporatio	n. (1995). teXsan.
Single Crystal Structure Analys	is Software. Version 1.7.
MSC, 3200 Research Forest Dr	ive, The Woodlands, TX 77381, USA.
;	
_publ_section_acknowledgement	nts
;	
ENTER ACKNOWLEDGEN	IENTS
;	
_publ_section_table_legends	
;	
ENTER TABLE LEGENDS	
;	
_publ_section_figure_captions	
;	
ENTER FIGURE CAPTION	IS
;	
CIF file for 2-trifluoromet	thyl-1-(3,4-dimethoxyphenyl)cyclopropyl
data_irie 4b	
#	
_audit_creation_date	'Fri Mar 18 09:02:36 2000'
_audit_creation_method	'from TEXRAY.INF file'
_audit_update_record	?
#	
_computing_data_collection	'MSC/AFC Diffractometer Control'
_computing_cell_refinement	'MSC/AFC Diffractometer Control'

cyanide (4b)

_computing_data_reduction	'teXsan'
_computing_structure_solution	?
_computing_structure_refinement	'teXsan'
_computing_publication_material	'teXsan'
_computing_molecular_graphics	?
#	
_chemical_compound_source	?
_chemical_name_common	?
_chemical_formula_weight	271.24
_chemical_formula_analytical	?
_chemical_formula_sum	'C13 H12 F3 N O2 '
_chemical_formula_moiety	'C13 H12 F3 N O2 '
_chemical_formula_structural	?
_chemical_melting_point	?
#	
_cell_length_a 12.91	84(5)
_cell_length_b 14.05	537(5)
_cell_length_c 7.074	43(2)
_cell_angle_alpha 90	
_cell_angle_beta 90	
_cell_angle_gamma 90)
_cell_volume 1284	.35(7)
_cell_formula_units_Z 4	
_cell_measurement_temperature	288.2
_cell_measurement_refIns_used	0
_cell_measurement_theta_min	0.0
_cell_measurement_theta_min _cell_measurement_theta_max	0.0 0.0
_cell_measurement_theta_min _cell_measurement_theta_max #	0.0 0.0
_cell_measurement_theta_min _cell_measurement_theta_max # _symmetry_cell_setting o	0.0 0.0 rthorhombic

19 _symmetry_Int_Tables_number _symmetry_space_group_name_Hall ? loop_ _symmetry_equiv_pos_as_xyz x,y,z 1/2-x,-y,1/2+z1/2+x, 1/2-y, -z-x,1/2+y,1/2-z _exptl_crystal_description 'needle' _exptl_crystal_colour 'colorless' _exptl_crystal_size_max 2.000 _exptl_crystal_size_mid 0.500 _exptl_crystal_size_min 0.500 1.403 _exptl_crystal_density_diffrn _exptl_crystal_density_meas 'not measured' 560.00 _exptl_crystal_F_000 _exptl_absorpt_coefficient_mu 0.123 _exptl_absorpt_correction_type none _exptl_special_details ; ? # _diffrn_special_details ; ? _diffrn_ambient_temperature 288.2 0.7107 _diffrn_radiation_wavelength 'Mo K\a' _diffrn_radiation_type

_diffrn_radiation_source	'Rigaku rotating anode'
_diffrn_radiation_monochromator	r graphite
_diffrn_radiation_detector	'Imaging Plate'
_diffrn_measurement_device	'Rigaku RAXISII'
_diffrn_measurement_method	
_diffrn_standards_number	0
_diffrn_standards_interval_count	0
_diffrn_standards_decay_%	0.00
loop_	
_diffrn_standard_refln_index_h	
_diffrn_standard_refln_index_k	
_diffrn_standard_refln_index_l	
_diffrn_reflns_number	1354
_reflns_number_total	1354
_reflns_number_observed	1343
_reflns_observed_criterion	>3.0sigma(I)
_diffrn_reflns_av_R_equivalents	0.000
_diffrn_reflns_av_sigmal/netI	0.045
_diffrn_reflns_limit_h_min	0
_diffrn_reflns_limit_h_max	16
_diffrn_reflns_limit_k_min	0
_diffrn_reflns_limit_k_max	18
_diffrn_refIns_limit_l_min	0
_diffrn_reflns_limit_l_max	9
_diffrn_reflns_theta_min	0.00
_diffrn_reflns_theta_max	0.00
_diffrn_reflns_reduction_process	'Lp corrections applied'
_diffrn_orient_matrix_UB_11	0.00000
_diffrn_orient_matrix_UB_12	0.00000
_diffrn_orient_matrix_UB_13	0.00000

_diffrn_orient_matrix_UB_21 0.00000 _diffrn_orient_matrix_UB_22 0.00000 _diffrn_orient_matrix_UB_23 0.00000 _diffrn_orient_matrix_UB_31 0.00000 _diffrn_orient_matrix_UB_32 0.00000 _diffrn_orient_matrix_UB_33 0.00000 #----loop_ _atom_type_symbol _atom_type_oxidation_number _atom_type_number_in_cell _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C 0 52 0.003 0.002 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) ; H 0 48 0.000 0.000 ;International Tables for Crystallography (1992, Vol. C, Table 6.1.1.2) F 0 12 0.017 0.010 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) ; N 0 4 0.006 0.003 ;International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1) ;

O 0 8 0.011 0.006

;International Tables for Crystallography

(1992, Vol. C, Tables 4.2.6.8 and 6.1.1.1)

;

#-----

loop_

_atom_site_label

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_U_iso_or_equiv

_atom_site_thermal_displace_type

_atom_site_calc_flag

_atom_site_calc_attached_atom

_atom_site_occupancy

_atom_site_refinement_flags

F(4) 0.1938(2) -0.1359(2) -0.6621(7) 0.088(1) Uani d . 1.00.

F(5) 0.1075(3) -0.0971(3) -0.4168(5) 0.092(1) Uani d . 1.00.

F(6) 0.1857(2) 0.0094(2) -0.5772(8) 0.105(1) Uani d . 1.00.

O(2) -0.4642(2) -0.0855(2) -0.8066(6) 0.0564(8) Uani d . 1.00 .

O(3) -0.3476(2) 0.0613(2) -0.8144(5) 0.0449(7) Uani d . 1.00.

N(2) 0.0316(3) -0.3076(3) -0.7295(7) 0.063(1) Uani d . 1.00.

C(2) -0.1899(3) -0.0339(2) -0.8020(6) 0.0353(8) Uani d . 1.00.

C(3) -0.0292(3) -0.1345(3) -0.7871(6) 0.0403(9) Uani d . 1.00.

C(4) -0.2091(3) -0.2040(3) -0.7894(6) 0.0435(10) Uani d . 1.00 .

 $C(5) \ \ -0.3609(3) \ \ -0.1048(3) \ \ -0.8023(6) \ \ 0.0414(9) \ \ Uani \ d \ . \ 1.00 \ .$

 $C(6) \ \ -0.2858(3) \ \ 0.1452(3) \ \ -0.8063(7) \ \ 0.047(1) \ \ \ Uani \ d \ . \ 1.00 \ .$

C(7) -0.3165(3) -0.1942(3) -0.7946(7) 0.0462(10) Uani d . 1.00.

C(9) 0.0068(3) -0.2313(3) -0.7541(6) 0.046(1) Uani d . 1.00.

 $C(10) \ 0.0361(3) \ -0.0535(3) \ -0.7101(7) \ 0.048(1) \ Uani \ d \ . \ 1.00 \ .$

C(11)	0.0373(3)	-0.0720(4	4) -0.9165	(7) 0.056	(1)	Uani d . 1.00 .
C(12)	0.1296(3)	-0.0704(4	4) -0.5917	(10) 0.068	(1)	Uani d . 1.00 .
C(13)	-0.5332(3) -0.1637(4) -0.7731	(8) 0.063	(1)	Uani d . 1.00 .
C(14)	-0.1453(3) -0.1251(2) -0.7928	8(5) 0.036	2(8)	Uani d . 1.00 .
C(15)	-0.2971(3) -0.0237(2) -0.8075	6(6) 0.035	4(8)	Uani d . 1.00 .
H(1)	-0.1487	0.0277	-0.8005	0.06(1)	Uiso	calc . 1.00 S
H(2)	-0.1824	-0.2688	-0.7917	0.07(2)	Uisc	o calc . 1.00 S
H(3)	-0.3590	-0.2564	-0.7981	0.06(1)	Uisc	o calc . 1.00 S
H(4)	-0.0001	0.0011	-0.6609	0.05(1)	Uiso	calc . 1.00 S
H(5)	0.0032	-0.0218	-1.0018	0.06(1)	Uiso	calc . 1.00 S
H(6)	0.0924	-0.1016	-0.9695	0.09(2)	Uiso	calc . 1.00 S
H(7)	-0.2424	0.1533	-0.9153	0.05(1)	Uiso	calc . 1.00 S
H(8)	-0.2488	0.1522	-0.6920	0.06(1)	Uiso	calc . 1.00 S
H(9)	-0.3373	0.1990	-0.8254	0.07(1)	Uiso	calc . 1.00 S
H(10)	-0.5986	-0.1368	-0.7753	0.09(2)	Uis	o calc . 1.00 S
H(11)	-0.5215	-0.2002	-0.6451	0.13(3)	Uis	o calc . 1.00 S
H(12)	-0.5371	-0.2212	-0.8710	0.09(2)	Uis	o calc . 1.00 S

loop_

_atom_site_aniso_label

- _atom_site_aniso_U_11 _atom_site_aniso_U_22
- _atom_site_aniso_U_33
- _atom_site_aniso_U_12
- _atom_site_aniso_U_13
- _atom_site_aniso_U_23

F(4)	0.044(1)	0.086(2)	0.135(3)	0.028(1)	-0.015(2)	-0.017(2)
F(5)	0.081(2)	0.114(3)	0.082(2)	0.025(2)	-0.028(2)	0.006(2)
F(6)	0.063(2)	0.074(2)	0.178(4)	-0.012(2)	-0.045(3)	-0.007(3)
O(2)	0.031(1)	0.059(2)	0.079(2)	-0.011(1)	0.000(1)	0.006(2)

O(3)	0.032(1)	0.039(1)	0.063(2)	0.006(1)	-0.003(1)	0.000(1)
N(2)	0.063(2)	0.045(2)	0.082(3)	0.016(2)	-0.004(2)	-0.002(2)
C(2)	0.031(2)	0.032(2)	0.043(2)	0.001(1)	0.000(2)	0.003(2)
C(3)	0.040(2)	0.034(2)	0.047(2)	0.006(1)	0.002(2)	0.003(2)
C(4)	0.048(2)	0.031(2)	0.051(2)	0.001(2)	0.003(2)	-0.001(2)
C(5)	0.034(2)	0.050(2)	0.041(2)	-0.005(1)	0.000(2)	0.000(2)
C(6)	0.046(2)	0.035(2)	0.059(2)	0.003(2)	0.000(2)	0.001(2)
C(7)	0.047(2)	0.038(2)	0.054(2)	-0.011(2)	-0.002(2)	0.001(2)
C(9)	0.044(2)	0.043(2)	0.050(2)	0.010(2)	0.000(2)	-0.006(2)
C(10)	0.036(2)	0.040(2)	0.069(3)	0.006(2)	-0.005(2)	-0.002(2)
C(11)	0.041(2)	0.062(3)	0.065(3)	0.006(2)	0.015(2)	0.016(2)
C(12)	0.042(2)	0.057(3)	0.105(4)	0.010(2)	-0.013(3)	-0.011(3)
C(13)	0.046(2)	0.072(3)	0.070(3)	-0.026(2)	0.003(2)	0.005(3)
C(14)	0.038(2)	0.035(2)	0.035(2)	0.002(1)	-0.001(2)	-0.001(2)
C(15)	0.033(2)	0.037(2)	0.037(2)	0.002(1)	0.000(2)	0.002(2)
#						

_refine_special_details

```
;
?
;
_refine_ls_structure_factor_coef
                                  F
                               full
_refine_ls_matrix_type
                                    w = 1/[s^2(Fo) + 0.00022|Fo|^2]'
_refine_ls_weighting_scheme
_refine_ls_hydrogen_treatment
                                   refU
_refine_ls_extinction_method
                                  none
                                ?
_refine_ls_extinction_coef
                                  ?
_refine_ls_abs_structure_details
                                  ?
_refine_ls_abs_structure_Flack
_refine_ls_number_reflns
                                 1343
_refine_ls_number_parameters
                                   184
```

_refine_ls_number_restraints	0					
_refine_ls_number_constraints	0					
_refine_ls_R_factor_all	?					
_refine_ls_R_factor_obs	0.0649					
_refine_ls_wR_factor_all	?					
_refine_ls_wR_factor_obs	0.0844					
_refine_ls_goodness_of_fit_all	?					
_refine_ls_goodness_of_fit_obs	3.117					
_refine_ls_shift/esd_max	0.0900					
_refine_ls_shift/esd_mean	0.0040					
_refine_diff_density_min	-0.48					
_refine_diff_density_max	0.30					
#						
_geom_special_details						
;						
?						
;						
loop_						
_geom_bond_atom_site_label_1						
_geom_bond_atom_site_label_2						
_geom_bond_distance						
_geom_bond_site_symmetry_1						
_geom_bond_site_symmetry_2						
_geom_bond_publ_flag						
? ? ? ? ???						
# ENTER BONDS HERE, ONE PER LINE						
# e.g. C1 C2 1.541(1) yes						
#						
loop_						
_geom_angle_atom_site_label_1						

```
_geom_angle_atom_site_label_2
_geom_angle_atom_site_label_3
_geom_angle
_geom_angle_site_symmetry_1
_geom_angle_site_symmetry_2
_geom_angle_site_symmetry_3
_geom_angle_publ_flag
# -- ENTER ANGLES HERE, ONE PER LINE --
# e.g. C1 C2 C3 109.4(3) . . . yes
   ?????????
#-----
loop_
_geom_contact_atom_site_label_1
_geom_contact_atom_site_label_2
_geom_contact_distance
_geom_contact_site_symmetry_1
_geom_contact_site_symmetry_2
_geom_contact_publ_flag
   ??????
# -- ENTER BONDS HERE, ONE PER LINE --
# e.g. O1 N1 1.541(1) . . yes
#-----
                        'ENTER JOURNAL NAME HERE'
_publ_requested_journal
_publ_contact_author
;
 ENTER NAME
ENTER ADDRESS
;
```

_publ_contact_letter

ENTER TEXT OF LETTER

_publ_requested_coeditor_name	?					
_publ_contact_author_phone	'ENTER PHONE NUMBER '					
_publ_contact_author_fax	'ENTER FAX NUMBER '					
_publ_contact_author_email	' ENTER EMAIL ADDRESS '					
loop_						
_publ_author_name						
_publ_author_address						
' FIRST AUTHORS NAME '						
;						
FIRST AUTHORS ADDRESS						
;						
_publ_section_title						
;						
ENTER SECTION TITLE						
;						
_publ_section_abstract						
;						
ENTER ABSTRACT						
;						
_publ_section_experimental						
;						
ENTER EXPERIMENTAL SECTION						
;						

;

;

_publ_section_comment

;

ENTER TEXT

;

_publ_section_references

;

ENTER OTHER REFERENCES

Molecular Structure Corporation. (1995). teXsan.

Single Crystal Structure Analysis Software. Version 1.7.

MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

;

_publ_section_acknowledgements

;

ENTER ACKNOWLEDGEMENTS

;

_publ_section_table_legends

;

ENTER TABLE LEGENDS

;

_publ_section_figure_captions

ENTER FIGURE CAPTIONS

;

;